Package: fluxible (via r-universe)

September 6, 2024

Title Ecosystem Gas Fluxes Calculations for Closed Loop Chamber Setup **Version** 0.0.3

Date 2024-09-03

Description Processes the raw data from closed loop flux chamber (or tent) setups into ecosystem gas fluxes usable for analysis. It goes from a data frame of gas concentration over time (which can contain several measurements) and a meta data file indicating which measurement was done when, to a data frame of ecosystem gas fluxes including quality diagnostics. Functions provided include different models (exponential as described in Zhao et al (2018) <doi:10.1016/j.agrformet.2018.08.022>, quadratic and linear) to estimate the fluxes from the raw data, quality assessment, plotting for visual check and calculation of fluxes based on the setup specific parameters (chamber size, plot area, ...).

License GPL (>= 3)

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, testthat (>= 3.0.0), vdiffr

Config/testthat/edition 3

Imports broom, dplyr, ggforce, ggplot2, haven, lubridate, rlang, purrr, stats, stringr, tidyr, zoo, progress

Depends R (>= 4.1)

LazyData true

URL https://cran.r-project.org/package=fluxible,
 https://plant-functional-trait-course.github.io/fluxible/

VignetteBuilder knitr

Repository https://plant-functional-trait-course.r-universe.dev

RemoteUrl https://github.com/plant-functional-trait-course/fluxible

RemoteRef HEAD

RemoteSha a5e3e7ccbd30bb7f1ddf49ab40cad8e549df9c23

2 Contents

Contents

Index

44
slopes60lin
slopes60
1 = 6
slopes30qua
slopes30lin_flag
slopes30
slopes30
slopes0_vol_tube
slopes0_vol
slopes0_temp
slopes0_flag
slopes0lin_flag
slopes0lin
slopes0
record_short
record_liahovden
flux_quality_lm
flux_quality_exp
flux_quality
flux_plot_quadratic
flux_plot_lin
flux_plot_flag
flux_plot_exp
flux_plot
flux_param_lm
flux_param_exp
flux_match
flux_fun_check
flux_flag_count
flux_fit_type
flux_fitting_quadratic
flux_fitting_lin
flux_fitting_exp
flux_fitting
flux_cut
flux_check_item
co2_liahovden 7 flux_calc 7
co2_fluxes 6 co2 liahovden 7
co2_df_short
co2_df_missing
co2_conc_missing
co2_conc

co2_conc 3

co2_conc

CO2 concentration

Description

CO2 concentration with measurements meta data

Usage

co2_conc

Format

A tibble with 1251 rows and 13 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

Examples

co2_conc

4 co2_conc_missing

co2_conc_missing

CO2 concentration

Description

CO2 concentration with measurements meta data, with missing data.

Usage

```
co2_conc_missing
```

Format

A tibble with 668 rows and 13 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

Examples

```
co2_conc_missing
```

co2_df_missing 5

co2_df_missing

CO2 concentration with missing data

Description

Continuous CO2 concentration as measured on the field, with missing data.

Usage

co2_df_missing

Format

A tibble with 1148 rows and 5 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

Examples

co2_df_missing

co2_df_short

CO2 concentration

Description

Continuous CO2 concentration as measured on the field

Usage

co2_df_short

Format

A tibble with 1801 rows and 5 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

6 co2_fluxes

Examples

co2_df_short

co2_fluxes

CO2 fluxes

Description

Calculated CO2 fluxes

Usage

co2_fluxes

Format

A tibble with 6 rows and 11 variables

fluxID Unique ID for each flux.

slope_tz Slope of C(t) at t zero.

temp_air_ave Air temperature inside the flux chamber in Celsius averaged over the flux measurement.

flux CO2 flux in mmol/sqm/hour.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm averaged over the flux measurement.

temp_soil Ground temperature inside the flux chamber in Celsius averaged over the flux measurement.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement started.

temp_fahr Air temperature inside the flux chamber in Fahrenheit averaged over the flux measurement.

temp_kelvin Air temperature inside the flux chamber in Kelvin averaged over the flux measurement.

Examples

co2_fluxes

co2_liahovden 7

co2_liahovden

CO2 concentration at Liahovden

Description

CO2 concentration at Liahovden site, used in example in readme file

Usage

```
co2_liahovden
```

Format

A tibble with 89692 rows and 5 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

Examples

co2_liahovden

flux_calc

calculates ecosystem gas fluxes

Description

calculates a flux based on the rate of change of gas concentration over time

Usage

```
flux_calc(
    slopes_df,
    slope_col,
    datetime_col = "f_datetime",
    conc_unit,
    flux_unit,
    cut_col = c(),
    keep_arg = c(),
    chamber_volume = 24.5,
    tube_volume = 0.075,
    atm_pressure = 1,
```

8 flux_calc

```
plot_area = 0.0625,
  cols_keep = c(),
  cols_ave = c(),
  fluxid_col = "f_fluxID",
  temp_air_col = "temp_air",
  temp_air_unit = "celsius",
  fit_type = c()
)
```

dataframe of flux slopes

Arguments

slopes_df

slope_col	column containing the slope to calculate the flux (in ppm*s^(-1))
datetime_col	column containing the datetime of each gas concentration measurements in slopes_df. The first one after cutting will be kept as datetime of each flux in the output.
conc_unit	unit in which the concentration of gas was measured ppm or ppb
flux_unit	unit in which the calculated flux will be mmol outputs fluxes in mmol*m^(-2) h ^(-1); micromol outputs fluxes in micromolm^(-2)*h^(-1)
cut_col	column containing cutting information
keep_arg	name in cut_col of data to keep
chamber_volume	volume of the flux chamber in L, default for Three-D project chamber (25x24.5x40cm), can also be a column in case it is a variable
tube_volume	volume of the tubing in L, default for summer 2020 setup, can also be a column in case it is a variable
atm_pressure	atmospheric pressure, assumed 1 atm, can be a constant (numerical) or a variable (column name)
plot_area	area of the plot in m^2, default for Three-D, can also be a column in case it is a variable
cols_keep	columns to keep from the input to the output. Those columns need to have unique values for each flux, as distinct() is applied.
cols_ave	columns with values that should be averaged for each flux in the output. Note that NA are removed in mean calculation.
fluxid_col	column containing the fluxID
temp_air_col	column containing the air temperature used to calculate fluxes. Will be averaged with NA removed.
temp_air_unit	units in which air temperature was measured. Has to be either Celsius, Fahrenheit or Kelvin.
fit_type	(optional) model used in flux_fitting, exponential, quadratic or linear. Will be automatically filled if slopes_df was produced using flux_quality().

Value

a dataframe containing fluxID, fluxes (in mmol*m^(-2)h^(-1) or micromolm^(-2)*h^(-1), depending on the value of flux_unit), temperature average for each flux, slope used for each flux calculation, the model used in flux_fitting, and any columns specified in cols_keep and cols_ave.

flux_check_item 9

Examples

```
data(slopes0)
flux_calc(slopes0,
slope_col = "f_slope",
conc_unit = "ppm",
flux_unit = "mmol")
```

flux_check_item

check the items inside flux_fun_check

Description

check the items inside flux_fun_check

Usage

```
flux_check_item(arg, fn, msg, narg, df_name = NA)
```

Arguments

arg argument to be checked by fn

fn function to check arg

msg message to display in case arg is the wrong class

narg name of arg

df_name name of arg in case it is a data frame

Author(s)

Adam Klimes

flux_cut

filter cut data before calculating fluxes

Description

filter cut data before calculating fluxes

Usage

```
flux_cut(slopes_df, cut_col, keep_arg)
```

Arguments

slopes_df dataset containing slopes and cut column cut_col column containing cutting information keep_arg name in cut_col of data to keep

flux_fitting

flux_fitting

Fitting a model to concentration data and estimating the slope

Description

fits gas concentration over time data with a model (exponential, quadratic or linear) and provides the slope later used to calculate gas fluxes with flux_calc

Usage

```
flux_fitting(
  conc_df,
  start_cut = 0,
 end_cut = 0,
  start_col = "f_start",
  end_col = "f_end",
 datetime_col = "f_datetime",
  conc_col = "f_conc",
  fluxid_col = "f_fluxID",
  t_window = 20,
  cz\_window = 15,
  b_{window} = 10,
  a_{window} = 10,
  roll_width = 15,
  t_zero = 0,
  fit_type
)
```

Arguments

conc_df	dataframe of gas concentration over time
start_cut	time to discard at the start of the measurements (in seconds)
end_cut	time to discard at the end of the measurements (in seconds)
start_col	column with datetime when the measurement started
end_col	column with datetime when the measurement ended
datetime_col	column with datetime of each concentration measurement Note that if there are duplicated datetime in the same f_{loc} only the first row will be kept
conc_col	column with gas concentration data
fluxid_col	column with ID of each flux
t_window	enlarge focus window before and after tmin and tmax (exponential fit)
cz_window	window used to calculate Cz, at the beginning of cut window (exponential fit)
b_window	window to estimate b. It is an interval after tz where it is assumed that the model fits the data perfectly (exponential fit)
a_window	window at the end of the flux to estimate a (exponential fit)

flux_fitting_exp 11

roll_width	width of the rolling mean for CO2 when looking for tz, ideally same as cz_window (exponential fit)
t_zero	time at which the slope should be calculated (for quadratic fit)
fit_type	exponential, quadratic or linear. Exponential is using the exponential model from Zhao et al (2018)

Value

a dataframe with the slope at t zero, and parameters of a model of gas concentration over time

References

Zhao, P., Hammerle, A., Zeeman, M., Wohlfahrt, G., 2018. On the calculation of daytime CO2 fluxes measured by automated closed transparent chambers. Agricultural and Forest Meteorology 263, 267–275. https://doi.org/10.1016/j.agrformet.2018.08.022

Examples

Description

Fits an exponential expression to the concentration evolution

Usage

```
flux_fitting_exp(
  conc_df,
  t_window = 20,
  cz_window = 15,
  b_window = 10,
  a_window = 10,
  roll_width = 15,
  start_cut = 0,
  end_cut = 0,
  start_col = "f_start",
  end_col = "f_end",
  datetime_col = "f_datetime",
  conc_col = "f_conc",
  fluxid_col = "f_fluxID"
)
```

flux_fitting_lin

Arguments

conc_df	dataframe of gas concentration over time
t_window	enlarge focus window before and after tmin and tmax
cz_window	window used to calculate Cz, at the beginning of cut window
b_window	window to estimate b. It is an interval after tz where it is assumed that C fits the data perfectly
a_window	window at the end of the flux to estimate a
roll_width	width of the rolling mean for CO2 when looking for tz, ideally same as cz_window
start_cut	time to discard at the start of the measurements (in seconds)
end_cut	time to discard at the end of the measurements (in seconds)
start_col	column with datetime when the measurement started
end_col	column with datetime when the measurement ended
datetime_col	column with datetime of each concentration measurement
conc_col	column with gas concentration data
fluxid_col	column with ID of each flux

Value

a dataframe with the slope at t zero, modeled concentration over time and exponential expression parameters

References

Zhao, P., Hammerle, A., Zeeman, M., Wohlfahrt, G., 2018. On the calculation of daytime CO2 fluxes measured by automated closed transparent chambers. Agricultural and Forest Meteorology 263, 267–275. https://doi.org/10.1016/j.agrformet.2018.08.022

flux_fitting_lin

linear fit to gas concentration over time

Description

fits a linear model to the gas concentration over time

Usage

```
flux_fitting_lin(
  conc_df,
  start_cut = 0,
  end_cut = 0,
  start_col = "f_start",
  end_col = "f_end",
  datetime_col = "f_datetime",
  conc_col = "f_conc",
  fluxid_col = "f_fluxID"
)
```

flux_fitting_quadratic 13

Arguments

conc_df	dataframe of gas concentration over time
start_cut	time to discard at the start of the measurements (in seconds)
end_cut	time to discard at the end of the measurements (in seconds)
start_col	column with datetime when the measurement started
end_col	column with datetime when the measurement ended
datetime_col	column with datetime of each concentration measurement
conc_col	column with gas concentration data
fluxid_col	column with ID of each flux

Value

a df with the modeled gas concentration, slope, intercept, std error, r square and p value of the linear model

```
flux_fitting_quadratic
```

quadratic fit to gas concentration over time

Description

fits a quadratic model to the gas concentration over time

Usage

```
flux_fitting_quadratic(
  conc_df,
  start_cut = 0,
  end_cut = 0,
  start_col = "f_start",
  end_col = "f_end",
  datetime_col = "f_datetime",
  conc_col = "f_conc",
  fluxid_col = "f_fluxID",
  t_zero = 0
)
```

Arguments

```
conc_df dataframe of gas concentration over time

start_cut time to discard at the start of the measurements (in seconds)

end_cut time to discard at the end of the measurements (in seconds)

start_col column with datetime when the measurement started
```

flux_fit_type

end_col	column with datetime when the measurement ended	
datetime_col	column with datetime of each concentration measurement	
conc_col	column with gas concentration data	
fluxid_col	column with ID of each flux	
t_zero	time at which the slope should be calculated	

Value

a df with the modeled gas concentration, slope, intercept, std error, r square and p value of the quadratic model

flux_fit_type	to check the type of fit	
---------------	--------------------------	--

Description

extracts the type of fit that was applied in flux_fitting or checks that the fit_type provided by the user is compatible with Fluxible

Usage

```
flux_fit_type(
  df,
  fit_type = c(),
  fit_type_list = c("exponential", "linear", "quadratic")
)
```

Arguments

```
df any dataframe

fit_type type of fit that was applied in flux_fitting. Needs to be filled only if the df was produced outside of the Fluxible workflow.

fit_type_list list of fit types in use with Fluxible.
```

flux_flag_count 15

CI	CI		
† Lux	tlag	count	

counts quality flags

Description

provides a table of how many fluxes were attributed which quality flag. This function is incorporated in flux_quality (output as a message) but can be used alone to extract a dataframe with the flag count.

Usage

```
flux_flag_count(
    slopes_df,
    f_flags = c("ok", "discard", "zero", "weird_flux", "start_error", "no_data",
        "force_ok"),
    fluxid_col = "f_fluxID",
    flags_col = "f_quality_flag",
    cut_col = "f_cut",
    cut_arg = "cut"
)
```

Arguments

slopes_df	dataframe of flux slopes
f_flags	list of flags used in the dataset (if different from default from flux_quality). If not provided, it will list only the flags that are present in the dataset (no showing 0).
fluxid_col	column containing fluxes unique ID
flags_col	column containing the quality flags
cut_col	column indicating which part of the flux is being cut
cut_arg	argument defining that the data point should be cut out

Value

a dataframe with the number of fluxes for each quality flags and their proportion to the total

Author(s)

Vincent Belde

Examples

```
data(slopes30qua_flag)
flux_flag_count(slopes30qua_flag)
```

16 flux_match

£1	£	-11.	
TLUX	Tun	check	

checking that arguments and columns are in the correct class

Description

checking that arguments and columns are in the correct class

Usage

```
flux_fun_check(args, fn, msg, origdf = NA)
```

Arguments

args list of arguments or dataframe to check

fn list of functions used to check (is.numeric, is.character, ...)

msg list of messages to return in case of failed check

origdf in case args is a df with selected columns to check origdf is the original df to take

the name from for a more obvious error message

Author(s)

Adam Klimes

flux_match

Matching continuously measured fluxes with measurement IDs and meta data

Description

Matching a dataframe of continuously measured gas concentration data with measurement metadata from another dataframe. Measurements are paired with their metadata based on datetime. Extra variables in both dataframes are kept in the output.

Usage

```
flux_match(
  raw_conc,
  field_record,
  startcrop = 10,
  measurement_length = 220,
  ratio_threshold = 0.5,
  time_diff = 0,
  datetime_col = "datetime",
  conc_col = "conc",
  start_col = "start"
)
```

flux_param_exp 17

Arguments

raw_conc dataframe of CO2 concentration measured continuously. Has to contain at least

a datetime column in ymd_hms format and a gas concentration column as dou-

ble.

field_record dataframe recording which measurement happened when. Has to contain at

least a column containing the start of each measurement, and any other column

identifying the measurements.

startcrop how many seconds should be discarded at the beginning of the measurement

measurement_length

length of the measurement (in seconds) from the start specified in the field_record

ratio_threshold

ratio (number of concentration measurement compared to length of measure-

ment in seconds) below which the data should be flagged as too little

time_diff time difference (in seconds) between the two datasets. Will be added to the

datetime column of the raw_conc dataset. For situations where the time was not

synchronized correctly.

datetime_col datetime column in raw_conc (dmy_hms format)

conc_col concentration column in raw_conc

start_col start column in field_record (dmy_hms format)

Value

a dataframe with concentration measurements, corresponding datetime, flux ID, measurements start and end, flags in case of no data or low number of data, and any variables present in one of the inputs.

Examples

```
data(co2_df_short, record_short)
flux_match(co2_df_short, record_short)
```

flux_param_exp

prepares text to print for flux_plot function

Description

creates a df with quality flags and quality diagnostics to print on the plots produced by flux_plot. flux_param_lm is for fit in the lm family (linear and quadratic) flux_param_exp is for the exponential fit

Usage

```
flux_param_exp(slopes_df, cut_arg = "cut")
```

Arguments

slopes_df that is being provided to flux_plot

cut_arg argument pointing rows to be cut from the measurements

18 flux_plot

flux_param_lm

prepares text to print in flux_plot

Description

creates a df with quality flags and quality diagnostics to print on the plots produced by flux_plot. flux_param_lm is for fit in the lm family (linear and quadratic) flux_param_exp is for the exponential fit

Usage

```
flux_param_lm(slopes_df, cut_arg = "cut")
```

Arguments

slopes_df the slopes_df that is being provided to flux_plot
cut_arg argument pointing rows to be cut from the measurements

flux_plot

plotting fluxes for visual evaluation

Description

plots the fluxes, fit and slope in facets with color code indicating quality flags This function takes time to run and is optional in the workflow, but it is still highly recommended to use it to visually check the measurements.

Usage

```
flux_plot(
  slopes_df,
  color_discard = "#D55E00",
  color_cut = "#D55E00",
  color_ok = "#009E73",
  color_zero = "#CC79A7",
  f_date_breaks = "1 min",
  f_minor_breaks = "10 sec",
  f_date_labels = "%e/%m \n %H:%M",
  f_ylim_upper = 800,
  f_ylim_lower = 400,
  f_plotname = "plot_quality",
  facet_wrap_args = list(ncol = 4, nrow = 3, scales = "free"),
 y_{text_position} = 500,
  print_plot = "FALSE";
 output = "print_only",
```

flux_plot

```
ggsave_args = list(),
cut_arg = "cut",
no_data_flag = "no_data"
)
```

Arguments

slopes_df dataset containing slopes, with flags produced by flux_quality color_discard color for fits with a discard quality flag color_cut color for the part of the flux that is cut color ok color for fits with an ok quality flag color_zero color for fits with a zero quality flag f_date_breaks date_breaks argument for scale_x_datetime f_minor_breaks minor breaks argument for scale_x_datetime f_date_labels date_labels argument for scale_x_datetime f_ylim_upper y axis upper limit f_ylim_lower y axis lower limit f_plotname filename for the extracted pdf file facet_wrap_args list of arguments for facet wrap paginate y_text_position position of the text box FALSE or TRUE, if TRUE it prints the plot in R but will take time depending print_plot on the size of the dataset "pdfpages", the plots are saved as A4 landscape pdf pages; "ggsave", the plots output can be saved with the ggsave function; "print_only" (default) prints the plot without creating a file (independently from 'print_plot' being TRUE or FALSE) list of arguments for ggsave (in case output = "ggsave") ggsave_args argument pointing rows to be cut from the measurements cut_arg no_data_flag flag marking fluxID without data in f_quality_flag

Value

a ggplot object if print_plot = TRUE, if print_plot = FALSE it will not return anything but will produce a file depending on output

Examples

```
data(slopes0_flag)
flux_plot(slopes0_flag)
data(slopes30lin_flag)
flux_plot(slopes30lin_flag)
data(slopes30qua_flag)
flux_plot(slopes30qua_flag)
```

20 flux_plot_flag

flux_plot_exp

plotting fluxes with exponential fit

Description

plots the fluxes that were fitted with an exponential model

Usage

```
flux_plot_exp(slopes_df, cut_arg = "cut", y_text_position = 500)
```

Arguments

slopes_df dataset containing slopes

cut_arg argument pointing rows to be cut from the measurements

y_text_position

position of the text box

flux_plot_flag

creates the flag column to be used by flux_plot

Description

creates a column with quality flags (from flux_quality) for the part of the rows to be kept, and cut flag for rows to be discarded

Usage

```
flux_plot_flag(slopes_df, param_df, cut_arg = "cut")
```

Arguments

slopes_df as provided in flux_plot param_df as provided by flux_param

cut_arg argument pointing rows to be cut from the measurements

flux_plot_lin 21

flux_plot_lin

plotting fluxes with linear fit

Description

plots the fluxes that were fitted with a linear model

Usage

```
flux_plot_lin(slopes_df, y_text_position = 500, cut_arg = "cut")
```

Arguments

slopes_df dataset containing slopes

y_text_position

position of the text box

cut_arg argument pointing rows to be cut from the measurements

flux_plot_quadratic plotting fluxes with a quadratic fit

Description

specific part of flux_plot for quadratic fit

Usage

```
flux_plot_quadratic(slopes_df, y_text_position = 500, cut_arg = "cut")
```

Arguments

slopes_df dataset containing slopes

y_text_position

position of the text box

cut_arg argument pointing rows to be cut from the measurements

22 flux_quality

flux_quality

assessing quality of slopes calculated with flux_fitting

Description

indicates if slopes should be discarded or replaced by 0 according to quality thresholds set by user

Usage

```
flux_quality(
  slopes_df,
  fit_type = c(),
  ambient\_conc = 421,
  error = 100,
  fluxid_col = "f_fluxID",
  slope_col = "f_slope",
  weird_fluxes_id = c(),
  force_ok_id = c(),
  ratio_threshold = 0,
  pvalue_col = "f_pvalue",
  rsquared_col = "f_rsquared",
  pvalue_threshold = 0.3,
  rsquared_threshold = 0.7,
  conc_col = "f_conc",
  b_{col} = "f_b",
  time_col = "f_time",
  fit_col = "f_fit",
  cut_col = "f_cut",
  rmse_threshold = 25,
  cor_threshold = 0.5,
  b_threshold = 1,
  cut_arg = "cut"
)
```

Arguments

slopes_df	dataset containing slopes
fit_type	model fitted to the data, linear, quadratic or exponential. Will be automatically filled if slopes_df was produced using flux_fitting()
ambient_conc	ambient gas concentration in ppm at the site of measurement (used to detect measurement that started with a polluted setup)
error	error of the setup, defines a window outside of which the starting values indicate a polluted setup
fluxid_col	column containing unique IDs for each flux
slope_col	column containing the slope of each flux (as calculated by the flux_fitting function)

flux_quality 23

weird_fluxes_id		
	vector of fluxIDs that should be discarded by the user's decision	
force_ok_id	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag	
ratio_threshold		
	ratio of gas concentration data points over length of measurement (in seconds) below which the measurement will be considered as not having enough data points to be considered for calculations	
pvalue_col	column containing the p-value of each flux (linear and quadratic fit)	
rsquared_col	column containing the r squared of each flux (linear and quadratic fit)	
pvalue_threshold		
	threshold of p-value below which the change of gas concentration over time is considered not significant (linear and quadratic fit)	
rsquared_thres	hold	
	threshold of r squared value below which the linear model is considered an unsatisfactory fit (linear and quadratic fit)	
conc_col	column containing the measured gas concentration (exponential fit)	
b_col	column containing the b parameter of the exponential expression (exponential fit)	
time_col	column containing the time of each measurement in seconds (exponential fit)	
fit_col	column containing the modeled data (exponential fit)	
cut_col	column containing the cutting information	
rmse_threshold	threshold for the RMSE of each flux above which the fit is considered unsatisfactory (exponential fit)	
cor_threshold	threshold for the correlation coefficient of gas concentration with time below which the correlation is considered not significant (exponential fit)	
b_threshold	threshold for the b parameter. Defines a window with its opposite inside which the fit is considered good enough (exponential fit)	
cut_arg	argument defining that the data point should be cut out	

Value

same dataframe with added quality flags and corrected slope column

Examples

```
data(slopes0lin)
flux_quality(slopes0lin, fit_type = "li")
data(slopes30)
flux_quality(slopes30, fit_type = "expo", slope_col = "f_slope")
```

24 flux_quality_exp

flux_quality_exp quality assessment for the slopes estimated by flux_fitting

Description

indicates if fluxes should be discarded or replaced by 0 according to parameters set by user. flux_quality_lm is for the model of the lm family. flux_quality_exp is for the exponential model.

Usage

```
flux_quality_exp(
    slopes_df,
    weird_fluxes_id = c(),
    force_ok_id = c(),
    b_col = "f_b",
    rmse_threshold = 25,
    cor_threshold = 0.5,
    b_threshold = 1
)
```

Arguments

slopes_df	dataset containing slopes, fluxID, and parameters of the exponential expression		
weird_fluxes_id			
	vector of fluxIDs that should be discarded by the user's decision		
force_ok_id	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag		
b_col	column containing the b parameter of the exponential expression		
rmse_threshold	threshold for the RMSE of each flux above which the fit is considered unsatisfactory		
cor_threshold	threshold for the correlation coefficient of gas concentration with time below which the correlation is considered non significant		
b_threshold	threshold for the b parameter. Defines a window with its opposite inside which the fit is considered good enough.		

Value

same dataframe with added flag and corrected slopes columns

flux_quality_lm 25

flux_quality_lm

quality assessment for the slopes estimated by flux_fitting

Description

indicates if fluxes should be discarded or replaced by 0 according to parameters set by user. flux_quality_lm is for the model of the lm family. flux_quality_exp is for the exponential model.

Usage

```
flux_quality_lm(
    slopes_df,
    weird_fluxes_id = c(),
    force_ok_id = c(),
    pvalue_col = "f_pvalue",
    rsquared_col = "f_rsquared",
    pvalue_threshold = 0.3,
    rsquared_threshold = 0.7
)
```

Arguments

```
slopes_df
                  dataset containing slopes, fluxID, p.value and r.squared
weird_fluxes_id
                  vector of fluxIDs that should be discarded by the user's decision
force ok id
                  vector of fluxIDs for which the user wants to keep the calculated slope despite a
                  bad quality flag
pvalue_col
                  column containing the p-value of each flux
rsquared_col
                  column containing the r squared to be used for the quality assessment
pvalue_threshold
                  threshold of p-value below which the change of gas concentration over time is
                  considered not significant (user decided)
rsquared_threshold
                  threshold of r squared value below which the linear model is considered an un-
                  satisfactory fit
```

Value

same dataframe with added flag and corrected slopes columns

26 record_short

record_liahovden

Measurements meta data at Liahovden

Description

Measurements meta data as recorded on the field at site Liahovden

Usage

record_liahovden

Format

A tibble with 138 rows and 3 variables

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

Examples

record_liahovden

record_short

Measurements meta data

Description

Measurements meta data as recorded on the field

Usage

record_short

Format

A tibble with 6 rows and 3 variables

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

Examples

record_short

slopes0 27

slopes0

Slopes for each flux

Description

Slopes of C(t) for each flux without cut.

Usage

slopes0

Format

A tibble with 1251 rows and 28 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

time Time variable of the flux in seconds.

cut Indicating if the measurement should be kept (keep) or discarded (cut).

Cm_est Estimation of the Cm parameter.

a_est Estimation of the a parameter.

b_est Estimation of the b parameter.

tz_est Estimation of the tz parameter.

Cz Cz parameter of the C(t) function.

Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

 \boldsymbol{tz} tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

slope tz Slope of C(t) at tz

fit C(t), modeled CO2 concentration as a function of time.

fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

start_z Datetime format of tz

28 slopes0lin

Examples

slopes0

slopes0lin

Slopes for each flux

Description

Slopes of linear fit for each flux without cut.

Usage

slopes0lin

Format

A tibble with 1251 rows and 22 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

time Time variable of the flux in seconds.

cut Indicating if the measurement should be kept (keep) or discarded (cut).

p.value P-value of the linear model of CO2 concentration over time.

r.squared R squared of the linear model of CO2 concentration over time.

adj.r.squared Adjusted R squared of the linear model of CO2 concentration over time.

intercept Intercept of the linear model of CO2 concentration over time.

slope Slope of the linear model of CO2 concentration over time.

fit Output of the linear model of CO2 concentration over time.

Examples

slopes0lin

slopes0lin_flag 29

slopes0lin_flag

Slopes for each flux

Description

Slopes of linear fit for each flux without cut, with quality flags.

Usage

slopes0lin_flag

Format

A tibble with 1251 rows and 22 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp soil Ground temperature inside the flux chamber in Celsius.

f_conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

f_fluxID Unique ID for each flux.

n conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

time Time variable of the flux in seconds.

cut Indicating if the measurement should be kept (keep) or discarded (cut).

f_pvalue P-value of the linear model of CO2 concentration over time.

f rsquared R squared of the linear model of CO2 concentration over time.

adj.r.squared Adjusted R squared of the linear model of CO2 concentration over time.

intercept Intercept of the linear model of CO2 concentration over time.

f_slope Slope of the linear model of CO2 concentration over time.

fit Output of the linear model of CO2 concentration over time.

f_start_error flagging if measurement started outside of the possible ambient concentration

f_quality_flag quality flag advising if the slope has to be replaced by 0 or NA

f_slope_corr slope corrected according to quality flag

Examples

slopes0lin_flag

30 slopes0_flag

slopes0_flag

Slopes for each flux

Description

Slopes of C(t) for each flux with 0 second cut, with quality flags.

Usage

slopes0_flag

Format

A tibble with 1251 rows and 36 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

f_conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

f_fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

Cm_est Estimation of the Cm parameter.

a_est Estimation of the a parameter.

b_est Estimation of the b parameter.

tz_est Estimation of the tz parameter.

Cz Cz parameter of the C(t) function.

Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

f_b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

f_slope Slope of C(t) at tz

slopes0_temp 31

f_fit C(t), modeled CO2 concentration as a function of time.

fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

start_z Datetime format of tz

f_cor_coef coefficient of correlation between gas concentration and time

f_RMSE RMSE of the exponential fit and the measured data

f_start_error flagging if measurement started outside of the possible ambient concentration

f_fit_quality flagging bad fit

f_correlation flagging if there is a correlation between gas concentration and time

f_quality_flag quality flag advising if the slope has to be replaced by 0 or NA

f_slope_corr slope corrected according to quality flag

Examples

slopes0_flag

slopes0_temp

Slopes for each flux

Description

Slopes of C(t) for each flux with air temperature in various units.

Usage

slopes0_temp

Format

A tibble with 1251 rows and 30 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

32 slopes0_vol

flag Data quality flags.

time Time variable of the flux in seconds.

cut Indicating if the measurement should be kept (keep) or discarded (cut).

Cm_est Estimation of the Cm parameter.

a_est Estimation of the a parameter.

b_est Estimation of the b parameter.

tz_est Estimation of the tz parameter.

Cz Cz parameter of the C(t) function.

Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

slope_tz Slope of C(t) at tz

fit C(t), modeled CO2 concentration as a function of time.

fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

start_z Datetime format of tz

temp_fahr Air temperature inside the flux chamber in Fahrenheit averaged over the flux measurement.

temp_kelvin Air temperature inside the flux chamber in Kelvin averaged over the flux measurement.

Examples

slopes0_temp

slopes0_vol

Slopes for each flux

Description

Slopes of C(t) for each flux without cut.

Usage

slopes0_vol

slopes0_vol 33

Format

A tibble with 1251 rows and 28 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

time Time variable of the flux in seconds.

cut Indicating if the measurement should be kept (keep) or discarded (cut).

Cm_est Estimation of the Cm parameter.

a_est Estimation of the a parameter.

b_est Estimation of the b parameter.

tz_est Estimation of the tz parameter.

Cz Cz parameter of the C(t) function.

Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

slope_tz Slope of C(t) at tz

fit C(t), modeled CO2 concentration as a function of time.

fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

start_z Datetime format of tz

volume volume of chamber in L

Examples

slopes0_vol

34 slopes0_vol_tube

slopes0_vol_tube

Slopes for each flux

Description

Slopes of C(t) for each flux without cut.

Usage

slopes0_vol_tube

Format

A tibble with 1251 rows and 28 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

time Time variable of the flux in seconds.

cut Indicating if the measurement should be kept (keep) or discarded (cut).

Cm_est Estimation of the Cm parameter.

a_est Estimation of the a parameter.

b_est Estimation of the b parameter.

tz_est Estimation of the tz parameter.

Cz Cz parameter of the C(t) function.

Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

slope_tz Slope of C(t) at tz

slopes30 35

fit C(t), modeled CO2 concentration as a function of time.

fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

start_z Datetime format of tz

volume volume of chamber in L

tube_vol volume of tubes in L

Examples

slopes0_vol_tube

slopes30

Slopes for each flux

Description

Slopes of C(t) for each flux with a 30 seconds cut at the end of each flux.

Usage

slopes30

Format

A tibble with 1251 rows and 28 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

time Time variable of the flux in seconds.

cut Indicating if the measurement should be kept (keep) or discarded (cut).

Cm_est Estimation of the Cm parameter.

a_est Estimation of the a parameter.

36 slopes30lin

b_est Estimation of the b parameter.

tz_est Estimation of the tz parameter.

Cz Cz parameter of the C(t) function.

Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

slope_tz Slope of C(t) at tz

fit C(t), modeled CO2 concentration as a function of time.

fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

start z Datetime format of tz

Examples

slopes30

slopes30lin

Slopes for each flux

Description

Slopes of linear fit for each flux with a 30 seconds cut at the end of each flux.

Usage

slopes30lin

Format

A tibble with 1251 rows and 22 variables

datetime Datetime at which CO2 concentration was recorded.

temp air Air temperature inside the flux chamber in Celsius.

temp soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

fluxID Unique ID for each flux.

n_conc Number of data point per flux.

slopes30lin_flag 37

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

time Time variable of the flux in seconds.

cut Indicating if the measurement should be kept (keep) or discarded (cut).

p.value P-value of the linear model of CO2 concentration over time.

r.squared R squared of the linear model of CO2 concentration over time.

adj.r.squared Adjusted R squared of the linear model of CO2 concentration over time.

intercept Intercept of the linear model of CO2 concentration over time.

slope Slope of the linear model of CO2 concentration over time.

fit Output of the linear model of CO2 concentration over time.

Examples

slopes30lin

slopes30lin_flag

Slopes for each flux

Description

Slopes of linear fit for each flux with 30 seconds end cut, with quality flags.

Usage

slopes30lin_flag

Format

A tibble with 1251 rows and 22 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp soil Ground temperature inside the flux chamber in Celsius.

f conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

f_fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

38 slopes30qua

flag Data quality flags.

time Time variable of the flux in seconds.

cut Indicating if the measurement should be kept (keep) or discarded (cut).

f_pvalue P-value of the linear model of CO2 concentration over time.

f_rsquared R squared of the linear model of CO2 concentration over time.

adj.r.squared Adjusted R squared of the linear model of CO2 concentration over time.

intercept Intercept of the linear model of CO2 concentration over time.

f_slope Slope of the linear model of CO2 concentration over time.

fit Output of the linear model of CO2 concentration over time.

f_start_error flagging if measurement started outside of the possible ambient concentration

f_quality_flag quality flag advising if the slope has to be replaced by 0 or NA

f_slope_corr slope corrected according to quality flag

Examples

slopes30lin_flag

slopes30qua

Slopes for each flux

Description

Slopes of quadratic fit for each flux with 30 seconds end cut and t_zero of 10 seconds, without quality flags. $C(t) = a + bt + ct^2$

Usage

slopes30qua

Format

A tibble with 1251 rows and 27 variables

f datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

f_conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

slopes30qua_flag 39

f_fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

f_pvalue P-value of the quadratic model of gas concentration over time.

f_rsquared R squared of the quadratic model of gas concentration over time.

f_adj_rsquared Adjusted R squared of the quadratic model of gas concentration over time.

f_intercept Intercept of the quadratic model of gas concentration over time.

f_param1 b parameter of C(t)

f_param2 c parameter of C(t)

f_slope Slope of the quadratic model of gas concentration over time at t_zero.

f_fit Output of the quadratic model of gas concentration over time.

f_fit_slope output of linear expression describing the slope at t_zero

Examples

slopes30qua

slopes30qua_flag

Slopes for each flux

Description

Slopes of quadratic fit for each flux with 30 seconds end cut and t_zero of 10 seconds, with quality flags. $C(t) = a + bt + ct^2$

Usage

slopes30qua_flag

Format

A tibble with 1251 rows and 27 variables

f_datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

f_conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

40 slopes30_flag

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f end Datetime at which the measurement ended.

f_fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

f_pvalue P-value of the quadratic model of gas concentration over time.

f_rsquared R squared of the quadratic model of gas concentration over time.

f_adj_rsquared Adjusted R squared of the quadratic model of gas concentration over time.

f_intercept Intercept of the quadratic model of gas concentration over time.

 f_param1 b parameter of C(t)

f_param2 c parameter of C(t)

f_slope Slope of the quadratic model of gas concentration over time at t_zero.

f_fit Output of the quadratic model of gas concentration over time.

f_fit_slope output of linear expression describing the slope at t_zero

f_start_error flagging if measurement started outside of the possible ambient concentration

f_quality_flag quality flag advising if the slope has to be replaced by 0 or NA

f_slope_corr slope corrected according to quality flag

Examples

slopes30qua_flag

slopes30_flag

Slopes for each flux

Description

Slopes of C(t) for each flux with 30 seconds end cut, with quality flags.

Usage

slopes30_flag

slopes30_flag 41

Format

A tibble with 1251 rows and 36 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

f_conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

f_fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

Cm_est Estimation of the Cm parameter.

a_est Estimation of the a parameter.

b_est Estimation of the b parameter.

tz_est Estimation of the tz parameter.

Cz Cz parameter of the C(t) function.

Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

f_b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

 f_slope Slope of C(t) at tz

f_fit C(t), modeled CO2 concentration as a function of time.

fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

start_z Datetime format of tz

f_cor_coef coefficient of correlation between gas concentration and time

f_RMSE RMSE of the exponential fit and the measured data

f_start_error flagging if measurement started outside of the possible ambient concentration

f_fit_quality flagging bad fit

f_correlation flagging if there is a correlation between gas concentration and time

f_quality_flag quality flag advising if the slope has to be replaced by 0 or NA

f_slope_corr slope corrected according to quality flag

Examples

slopes30_flag

42 slopes60

slopes60

Slopes for each flux

Description

Slopes of C(t) for each flux with a cut of 60 seconds at the end of each flux.

Usage

slopes60

Format

A tibble with 1251 rows and 28 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

time Time variable of the flux in seconds.

cut Indicating if the measurement should be kept (keep) or discarded (cut).

Cm_est Estimation of the Cm parameter.

a_est Estimation of the a parameter.

b_est Estimation of the b parameter.

tz_est Estimation of the tz parameter.

Cz Cz parameter of the C(t) function.

Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

slope tz Slope of C(t) at tz

fit C(t), modeled CO2 concentration as a function of time.

fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

start_z Datetime format of tz

slopes60lin 43

Examples

slopes60

slopes60lin

Slopes for each flux

Description

Slopes of linear fit for each flux with a 60 seconds cut at the end of each flux.

Usage

slopes60lin

Format

A tibble with 1251 rows and 22 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

end Datetime at which the measurement ended.

fluxID Unique ID for each flux.

n_conc Number of data point per flux.

ratio Ratio of n_conc over length of the measurement (in seconds).

flag Data quality flags.

time Time variable of the flux in seconds.

cut Indicating if the measurement should be kept (keep) or discarded (cut).

p.value P-value of the linear model of CO2 concentration over time.

r.squared R squared of the linear model of CO2 concentration over time.

adj.r.squared Adjusted R squared of the linear model of CO2 concentration over time.

intercept Intercept of the linear model of CO2 concentration over time.

slope Slope of the linear model of CO2 concentration over time.

fit Output of the linear model of CO2 concentration over time.

Examples

slopes60lin

Index

* datasets	<pre>flux_fitting_quadratic, 13</pre>
co2_conc, 3	flux_flag_count, 15
co2_conc_missing,4	flux_fun_check, 16
co2_df_missing,5	flux_match, 16
co2_df_short, 5	flux_param_exp, 17
co2_fluxes, 6	flux_param_lm, 18
co2_liahovden, 7	flux_plot, 18
record_liahovden, 26	flux_plot_exp, 20
record_short, 26	flux_plot_flag, 20
slopes0,27	flux_plot_lin, 21
slopes0_flag, 30	<pre>flux_plot_quadratic, 21</pre>
slopes0_temp, 31	flux_quality, 22
slopes0_vol, 32	flux_quality_exp, 24
slopes0_vol_tube, 34	flux_quality_lm, 25
slopes0lin, 28	
slopes0lin_flag,29	ggsave, 19
slopes30,35	1.3.1
slopes30_flag,40	record_liahovden, 26
slopes30lin,36	record_short, 26
slopes30lin_flag,37	slopes0, 27
slopes30qua, 38	slopes0_flag, 30
slopes30qua_flag,39	slopes0_temp, 31
slopes60,42	slopes0_vol, 32
slopes60lin,43	slopes0_vol_tube, 34
	slopes0lin, 28
co2_conc, 3	slopes0lin_flag, 29
co2_conc_missing, 4	slopes30, 35
co2_df_missing, 5	slopes30_flag, 40
co2_df_short, 5	slopes30lin, 36
co2_fluxes, 6	slopes30lin_flag, 37
co2_liahovden, 7	slopes30qua, 38
	slopes30qua_flag, 39
facet_wrap_paginate, 19	slopes60, 42
flux_calc, 7	slopes60lin, 43
flux_check_item, 9	STOPESCOTTIII, 15
flux_cut, 9	
flux_fit_type, 14	
flux_fitting, 10	
flux_fitting_exp, 11	
flux_fitting_lin, 12	